
1. Introduction

Increasingly, crystal structures are being solved using
powder diffraction data. This is due to the evolving
power of the ab initio structure solving techniques
using powder diffraction data and to the fact that in
many cases it is impossible to obtain crystals of suffi-
cient size to carry out a single crystal structure analysis.
A critical step in the solution process is the determina-
tion of a unit cell that defines the lattice. This is com-

monly done with an indexing program such as
DICVOL9l[1] or TREOR[2]. 

A correct indexing solution is signaled by a high
value of the resulting figure of merit (de Wolff[3];
Smith and Snyder[4]). However, a high figure of merit
does not guarantee a correct solution. It is a necessary
but not sufficient condition for correctness. For exam-
ple in certain cases, a unique indexing solution does not
exist. When a lattice metric singularity occurs [5], there
are two or more cells that will account for the same set 
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A lattice metric singularity occurs when
unit cells defining two (or more) lattices
yield the identical set of unique calculated
d-spacings. The existence of such
singularities, therefore, has a practical
and theoretical impact on the indexing of
powder patterns. For example, in experi-
mental practice an indexing program may
find only the lower symmetry member
of a singularity. Obviously, it is important
to recognize such cases and know how
to proceed. Recently, we described:
(1) a binary singularity involving a
monoclinic and a rhombohedral lattice
in a subcell-supercell relationship and
(2) a second type of singularity—a ternary
singularity–in which two of the three
lattices are in a derivative composite
relationship. In this work, we describe a
ternary lattice metric singularity involving a
cubic P, a tetragonal P, and an orthorhombic
C lattice. Furthermore, there is a binary
singularity, involving a hexagonal P and
orthorhombic P lattice, which is character-
ized by a set of unique d-spacings very
close to that of the ternary singularity.

The existence of such singularities is more
common than once thought and requires a
paradigm shift in experimental practice. In
addition singularities provide opportunities
in material design as they point to highly
specialized lattices that may be associated
with unusual physical properties.
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of observed d-spacings. This mathematical condition is
defined as follows:

A lattice metric singularity (LMS) occurs
when unit cells defining two (or more) lattices
yield identical sets of unique calculated
d-spacings.

Herein singularities in the cubic system will be
discussed. In particular special emphasis will be on the
conjunction of a ternary and a binary LMS that occurs
in the cubic primitive system. This conjunction means
that in this system there will always be multiple index-
ing solutions that are mathematically correct.
Consequently, in experimental practice care must be
taken to obtain the correct answer. When using index-
ing procedures, there is no inherent reason to assume
the correct answer is necessarily the lattice of highest
symmetry. Clearly, in addition to indexing procedures,
other methods—e.g., optical, single crystal, etc.,
—should be routinely employed to establish uniquely
the lattice and symmetry.

Finally it will be shown that the lower symmetry
lattices involved in the singularities discussed herein
have unusual metric properties and are characterized by
specialized reduced forms. A specialized reduced
form can signal that certain derivative lattices can have
higher symmetry than the original lattice. Accordingly,
it is expected the physical properties of actual crystals
with such specialized lattices would be influenced by
the singularity condition.

2. The Ternary Lattice Metric
Singularity

The three lattices involved in the ternary singularity
are given in Table 1. The lattices I, II, and III are
defined by primitive cells 1 and 2, and C-centered cell
3, respectively. Alternatively, lattice III can be defined
by the primitive reduced cell denoted as 3'. When one
compares the volumes of cells 1,2,3' (i.e., the 3 primi-
tive cells), one notes that the cell volumes are in a
3:1.5:1 relationship. In fact, cells 2 and 3' are derivative
subcells of cell 1.
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Table 1. The three lattices involved in a ternary lattice metric singularitya. The unique sets of calculated d-spacings for the three lattices are
identical

Lattice I: Lattice II: Lattice III: Lattice III:
Cubic P Tetragonal P Orthorhombic C Reduced P

Cell 1 Cell 2 Cell 3 Cell 3'

a (Å) 8.660254 6.123724 4.082483 4.082483
b (Å) 8.660254 6.123724 12.247449 6.454972
c (Å) 8.660254 8.660254 8.660254 8.660254
a (°) 90.0 90.0 90.0 90.0
β (°) 90.0 90.0 90.0 90.0
γ (°) 90.0 90.0 90.0 108.435

V(Å3) 649.52 324.76 433.01 216.51

c/a 1.4142 2.1213 2.1213
c/b 0.7071 1.3416

a Lattice relationships: 

Cell 1 → Cell 2 T = [ 0 –1/2 1/2 / 0 1/2 1/2 / –1 0 0 ]
Cell 1 → Cell 3 T = [ 0 –1/3 1/3 / 0 1 1 / –1 0 0 ]
Cell 2 → Cell 3 T = [ 0 –2/3 0 / –2 0 0 / 0 0 –1 ]

Cell 3'→ Cell 1 T = [ 2 1 0 / –1 1 0 / 0 0 1]
Cell 2 → Cell 1 T = [ – 1 1 0 / 0 0 1 / 1 1 0]

NIST*LATTICE [6] was used to determine the above and other lattice relationships cited herein.
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The reduced forms for cells 1-3 that define the three
lattices are given in Table 2. As the reduced forms are
all different, the three cells clearly define different
lattices. The reduced forms 3, 11 and 38 are character-
istic of a primitive cubic, primitive tetragonal, and a
C-centered orthorhombic lattice, respectively. Detailed
inspection of the second two reduced forms shows that
there is more specialization than required for the given
reduced form type. For example, in the case of lattice
II, the 1:1:2 relationship between the symmetrical dot
products—a·a:b·b:c·c—of the reduced form implies a
highly specialized lattice.

In Table 3, we present the unique d-spacings for the
three lattices. The sets of unique interplanar spacings
are identical. However, the columns labeled M for
lattices I-III show that the number of d-spacings with a
given calculated d-value can be different. Consider
a calculated d-value equal to 1.2910 Å (Note: 1 Å
[= 0.1 nm] is the common unit in crystallography). For 
this value the table shows that the numbers calculated

for lattices I, II, and III are 1, 2 and 7, respectively.
When the program NBS*AIDS83[8] calculates more
than one (not symmetrically related) d-spacing with the
same value, the hkl indices for only the first of the
group are given in Table 3.

For the nonspecialized lattice of tetragonal or
orthorhombic symmetry, the program would calculate
M discrete d-spacings for those cases in which M > 1 in
Table 3. Inspection of d-spacing data for lattices II and
III reveals that these two lattices are highly specialized
in the sense that the value of M is often greater than 1.
Thus the patterns have far fewer discrete lines than nor-
mally possible for the given symmetry. This is shown in
Table 4. In column four of this table, the compression
ratio is given which is the ratio of the unique d-spacings
to the total calculated d-spacings. For the tetragonal
lattice, the compression ratio is 0.422 when the
d-spacings are calculated out to a 2θ of 55º with
λ = 0.7093 Å.
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Table 2. Reduced form data for cells 1-3a defining Lattices I-III. The reduced forms for the tetragonal P and the orthorhombic C lattices have
extra specialization

Lattice I: Lattice II: Lattice III:
Cubic P Tetragonal P Orthorhombic C

Reduced form 3 11 38
number

Reduced form a·a a·a a·a a·a a·a c·c a·a b·b c·c
definitionb 0 0 0 0 0 0 0 0 –a ·a /2

Reduced form 75.0 75.0 75.0 37.5 37.5 75.0 16.667 41.667 75.0 
(Å2) 0 0 0 0 0 0 0 0 –8.331

Reduced form 1 1 1 1 1 2 1 2.5 4.5
normalized 0 0 0 0 0 0 0 0 –0.5

a Cell dimensions for cells 1-3 are given in Table 1. 
b See metric classification of the 44 reduced forms given in Table 2 of Ref.[7]. 
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Table 3. Ternary lattice metric singularity. The values of the calculated d-spacings (Å) for the three lattices are identical

Lattice I: Lattice II: Lattice III:
Cubic Pa Tetragonal Pb Orthorhombic Cc

No. h k l d-calc Md h k l d-calc M h k l d-calc M

1 1 0 0 8.6603 1 0 0 1 8.6603 1 0 0 1 8.6603 1
2 1 1 0 6.1237 1 1 0 0 6.1237 1 0 2 0 6.1237 1
3 1 1 1 5.0000 1 1 0 1 5.0000 1 0 2 1 5.0000 1
4 2 0 0 4.3301 1 1 1 0 4.3301 2 0 0 2 4.3301 1
5 2 1 0 3.8730 1 1 1 1 3.8730 1 1 1 0 3.8730 1
6 2 1 1 3.5355 1 1 0 2 3.5355 1 1 1 1 3.5355 2
7 2 2 0 3.0619 1 2 0 0 3.0619 2 0 4 0 3.0619 1
8 3 0 0 2.8868 1 0 0 3 2.8868 2 1 3 0 2.8868 4
9 3 1 0 2.7386 1 2 1 0 2.7386 1 1 3 1 2.7386 1

10 3 1 1 2.6112 1 2 1 1 2.6112 2 0 2 3 2.6112 1
11 2 2 2 2.5000 1 2 0 2 2.5000 1 0 4 2 2.5000 1
12 3 2 0 2.4019 1 1 1 3 2.4019 1 1 3 2 2.4019 1
13 3 2 1 2.3146 1 2 1 2 2.3146 1 1 1 3 2.3146 1
14 4 0 0 2.1651 1 2 2 0 2.1651 2 0 0 4 2.1651 1
15 4 1 0 2.1004 1 2 2 1 2.1004 2 1 5 0 2.1004 2
16 3 3 0 2.0412 1 3 0 0 2.0412 2 0 6 0 2.0412 5
17 3 3 1 1.9868 1 3 0 1 1.9868 2 0 6 1 1.9868 2
18 4 2 0 1.9365 1 3 1 0 1.9365 3 2 2 0 1.9365 1
19 4 2 1 1.8898 1 3 1 1 1.8898 1 2 2 1 1.8898 3
20 3 3 2 1.8464 1 3 0 2 1.8464 1 0 6 2 1.8464 2
21 4 2 2 1.7678 1 3 1 2 1.7678 2 2 2 2 1.7678 2
22 5 0 0 1.7321 1 0 0 5 1.7321 2 0 0 5 1.7321 2
23 5 1 0 1.6984 1 3 2 0 1.6984 2 2 4 0 1.6984 2
24 5 1 1 1.6667 1 3 2 1 1.6667 3 2 4 1 1.6667 4
25 5 2 0 1.6082 1 1 1 5 1.6082 2 1 7 0 1.6082 2
26 5 2 1 1.5811 1 3 2 2 1.5811 1 1 7 1 1.5811 3
27 4 4 0 1.5309 1 4 0 0 1.5309 2 0 8 0 1.5309 1
28 5 2 2 1.5076 1 2 0 5 1.5076 2 0 8 1 1.5076 4
29 5 3 0 1.4852 1 4 1 0 1.4852 2 0 6 4 1.4852 3
30 5 3 1 1.4639 1 4 1 1 1.4639 3 2 4 3 1.4639 1
31 6 0 0 1.4434 1 3 3 0 1.4434 4 2 6 0 1.4434 4
32 6 1 0 1.4237 1 3 3 1 1.4237 1 2 6 1 1.4237 1
33 6 1 1 1.4049 1 4 1 2 1.4049 2 1 7 3 1.4049 2
34 6 2 0 1.3693 1 4 2 0 1.3693 3 2 6 2 1.3693 1
35 6 2 1 1.3525 1 4 2 1 1.3525 3 0 8 3 1.3525 3
36 5 4 1 1.3363 1 3 2 4 1.3363 1 3 1 1 1.3363 3
37 5 3 3 1.3207 1 4 1 3 1.3207 2 0 6 5 1.3207 2
38 6 2 2 1.3056 1 4 2 2 1.3056 2 0 4 6 1.3056 1
39 6 3 0 1.2910 1 3 3 3 1.2910 2 1 9 0 1.2910 7
40 6 3 1 1.2769 1 2 1 6 1.2769 1 1 9 1 1.2769 2

a Cell 1 (Cubic P): a = 8.660254 Å, V = 649.52 Å3.
b Cell 2 (Tetragonal P): a = 6.123724 Å, c = 8.660254 Å, V = 324.76 Å3.
c Cell 3 (Orthorhombic C): a = 4.082483 Å, b = 12.247449 Å c = 8.660254 Å, V = 433.01 Å3.
d Number of lines calculated (NBS*AIDS83[8]) with the specified d-spacing value.



3. The Binary Lattice Metric Singularity

The two lattices involved in the binary singularity
are given in Table 5. These lattices are defined by
primitive cells 4 and 5. Cell 4 defines an orthorhombic
lattice whereas cell 5 of twice the volume defines a
hexagonal lattice. The nature of the lattice relation-
ship can be deduced from the transformation matrix
relating the two cells. Thus lattice V is a superlattice of
lattice IV.

The reduced forms for cells 1 and 2 defining the two
lattices are given in Table 6. As the reduced forms
are different, the two cells clearly define different
lattices. The reduced form type 32 is characteristic for
a primitive orthorhombic lattice and reduced form 22
for a hexagonal lattice. Detailed inspection of each
reduced form (or normalized reduced form) shows that
there is more specialization than required for the given
reduced form type. For example, in the case of lattice
IV, the 1:1.5:3 relationship between the symmetrical
dot products—a·a:b·b:c·c—of the reduced form implies
a highly specialized lattice.
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Table 4. Ternary lattice metric singularity. The d-spacings for each lattice were calculateda using the specified 2θ maximum values and λ = 0.7093 Å.
The number of unique d-spacings for the three lattices is identical. The low values for the compression ratios for lattices II and III show that they
are specialized (i.e., many d-spacings have the same value)

2θ Unique Total Compression
Maximum d-spacings d-spacings Ratiob

40 59 59 1
Cell 1c 45 74 74 1
Lattice I 50 90 90 1

55 106 106 1

40 59 117 0.504
Cell 2d 45 74 157 0.471
Lattice II 50 90 202 0.446

55 106 251 0.422

40 59 140 0.421
Cell 3e 45 74 189 0.392
Lattice III 50 90 251 0.359

55 106 322 0.329

a NBS*AIDS83[8].
b Compression ratio = “unique d-spacings / possible d-spacings” for a given symmetry.
c Cell 1 (Cubic P): a = 8.660254 Å, V = 649.52 Å3.
d Cell 2 (Tetragonal P): a = 6.123724 Å, c = 8.660254 Å, V = 324.76 Å3.
e Cell 3 (Orthorhombic C): a = 4.082483 Å, b = 12.247449 Å, c = 8.660254 Å, V = 433.01 Å3.

Table 5. The two lattices involved in a binary lattice metric singu-
laritya. The unique sets of calculated d-spacings for the two lattices
are identical

Lattice IV: Lattice V:
Orthorhombic P Hexagonal P

Cell 4 Cell 5

a (Å) 5.0 10.0
b (Å) 6.123724 10.0
c(Å) 8.660254 6.123724
α(°) 90.0 90.0
β(°) 90.0 90.0
γ (°) 90.0 120.0

V(Å3) 265.17 530.33

c/a 1.7320 0.6124
c/b 1.4142 

a Lattice relationships:
Cell 4 → Cell 5 T = [ 2 0 0 / –1 0 –1 / 0 1 0 ].
NIST*LATTICE[6]was used to determine these and other lattice
relationships cited herein.



In Table 7, we present the unique d-spacings for the
two lattices. The sets of unique interplanar spacings are
identical. However, the columns labeled M for lattices
IV and V show that the number of d-spacings with a
given calculated d-value can be different. Consider a
calculated d-value equal to 1.3056. For this value, the
table shows that the numbers calculated for lattices
IV and V are 4 and 2, respectively. When the program
NBS*AIDS83[8] calculates more than one (not sym-
metrically related) d-spacing with the same value, the
hkl indices for only the first of the group are given in
the table.

For a nonspecialized lattice of orthorhombic or
hexagonal symmetry, the program would calculate M
discrete d-spacings for those cases in which M > 1 in
Table 7. Inspection of the two patterns reveals that
these two lattices are highly specialized in the sense
that the value of M is often greater than 1. Thus the pat-
terns have far fewer discrete lines than normally possi-
ble for the given symmetry. This is shown in Table 8. In
column 4 of this table, the compression ratio is given
which is the ratio of the unique d-spacings to the total
calculated d-spacings. For the orthorhombic lattice, the
compression ratio is 0.29 when the d-spacings are
calculated out to a 2θ of 55º with λ = 0.7093 Å.

4. Conjunction of Lattice Metric
Singularities in the Cubic P System

The singularities discussed above can present diffi-
culties in indexing powder patterns. As an example, let
us assume that an indexing program is presented with a
set of observed d-spacings obtained from a crystal
whose lattice is correctly defined by a cubic primitive
unit cell. What should the indexing program reveal?
Mathematically, a unique indexing solution does not
exist. As the data in Table 3 illustrate, three distinct
lattices—defined by a cubic P, a tetragonal P, and an
orthorhombic C unit cell—are characterized by the
same set of unique d-spacings. Further complicating
this situation is the fact that this ternary LMS is in con-
junction with a binary LMS, i.e., the two lattices in the
binary LMS (Table 7) are characterized by a set of
d-spacings that is almost the same as the one in the
ternary LMS (Table 3).

This conjunction is demonstrated in Table 9 which
shows how closely the sets of d-spacings in the two
singularities are related. Consider a data set comprised
of the first 20 possible d-spacings for the cubic P crystal.
In addition assume that merely one d-spacings [2.7386]
is accidentally absent. In this case there are five
possible answers that are mathematically correct! In
fact, using this data set as input to the Boultif and Louër
indexing program [1], it was possible to obtain all five
answers.
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Table 6. Reduced form data for cells 4-5a defining Lattices IV-V. Both reduced forms have extra specialization

Lattice IV: Lattice V:
Orthorhombic P Hexagonal P

Reduced form 32 22
number

Reduced form a·a b·b c·c a·a b·b b·b
definitionb 0 0 0 –b·b/ 2 0 0

Reduced form 25.0 37.5 75.0 37.5 100 100
(Å2) 0 0 0 –50 0 0

Reduced form 1 1.5 3 1 2.67 2.67
normalized 0 0 0 –1.33 0 0

a Cell dimensions for cells 4-5 are given in Table 5. 
b See metric classification of the 44 reduced forms given in Table 2 of Ref.[7].



5. Discussion

The results above are described in terms of a lattice
defined by a cubic primitive cell (a = 8.6603 Å).
However, by the principle of similarity, the same
ambiguities in indexing exist with respect to experi-
mental data determined from any crystal characterized
by a cubic primitive cell. Furthermore, as the cubic 

primitive lattice is common for inorganic materials, the
above type of ambiguity can often present difficulties
in common practice. This is especially true today as
more and more structures are solved from powder data
only.

As demonstrated above, there is more than one mathe-
matically correct answer when indexing “ideal” data
from a cubic primitive crystal. In experimental practice,
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Table 7. Binary lattice metric singularity. The values of the calculated d-spacings for the two lattices are
identical

Lattice I: Lattice II:
Orthorhombica Hexagonal b

No. h k l d-calc M c h k l d-calc M

1 0 0 1 8.6603 1 1 0 0 8.6603 1
2 0 1 0 6.1237 1 0 0 1 6.1237 1
3 1 0 0 5.0000 2 1 0 1 5.0000 2
4 1 0 1 4.3301 2 2 0 0 4.3301 1
5 1 1 0 3.8730 1 1 1 1 3.8730 1
6 1 1 1 3.5355 2 2 0 1 3.5355 1
7 1 0 2 3.2733 1 2 1 0 3.2733 1
8 0 2 0 3.0619 1 0 0 2 3.0619 1
9 0 0 3 2.8868 3 3 0 0 2.8868 3

10 1 2 0 2.6112 2 3 0 1 2.6112 2
11 2 0 0 2.5000 4 2 0 2 2.5000 2
12 2 0 1 2.4019 1 3 1 0 2.4019 1
13 2 1 0 2.3146 2 2 2 1 2.3145 1
14 2 1 1 2.2361 2 3 1 1 2.2361 2
15 2 0 2 2.1651 2 4 0 0 2.1651 1
16 0 2 3 2.1004 1 3 0 2 2.1004 1
17 0 3 0 2.0412 3 4 0 1 2.0412 2
18 0 3 1 1.9868 2 3 2 0 1.9868 2
19 2 2 0 1.9365 2 2 2 2 1.9365 1
20 1 3 0 1.8898 4 1 1 3 1.8898 4
21 0 3 2 1.8464 2 2 0 3 1.8464 1
22 2 1 3 1.8058 1 4 1 1 1.8058 1
23 2 2 2 1.7678 2 4 0 2 1.7678 1
24 0 0 5 1.7321 2 5 0 0 1.7321 2
25 3 0 0 1.6667 4 5 0 1 1.6667 4
26 1 0 5 1.6366 3 4 2 0 1.6366 1
27 3 1 0 1.6082 2 3 3 1 1.6082 2
28 2 3 0 1.5811 5 4 2 1 1.5811 2
29 2 3 1 1.5554 2 5 1 0 1.5554 2
30 0 4 0 1.5309 1 0 0 4 1.5309 1
31 3 1 2 1.5076 3 5 1 1 1.5076 3
32 2 3 2 1.4852 2 4 0 3 1.4852 1
33 1 4 0 1.4639 2 1 1 4 1.4639 2
34 3 0 3 1.4434 7 6 0 0 1.4434 3
35 1 3 4 1.4237 2 4 3 0 1.4237 2
36 3 1 3 1.4049 2 6 0 1 1.4049 1
37 3 2 2 1.3868 5 5 2 0 1.3868 5
38 1 1 6 1.3525 2 3 0 4 1.3525 2
39 3 0 4 1.3207 2 6 1 0 1.3207 2
40 2 4 0 1.3056 4 6 0 2 1.3056 2

a Cell 4 (Orthorhombic P): a = 5.0 Å, b = 6.123724 Å, c = 8.660254 Å, V = 265.17 Å3.
b Cell 5 (Hexagonal P): a = 10.0 Å, c = 6.123724 Å, V = 530.33 Å3.
c Number of lines calculated (NBS*AIDS83[8]) with the specified d-spacing value.
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Table 8. Binary lattice metric singularity. The d-spacings for each lattice were calculateda using the specified 2θ maximum values and
λ = 0.7093 Å. The number of unique d-spacings for the two lattices is identical. The low values for the compression ratios for lattices IV and V
show that they are special (i.e., many d-spacings have the same value)

2θ Unique Total Compression
Maximum d-spacings d-spacings Ratiob

40 64 174 0.368
Cell 4c 45 81 242 0.335
Lattice IV 50 97 306 0.317

55 117 400 0.292

40 64 126 0.508
Cell 5d 45 81 171 0.474
Lattice V 50 97 215 0.451

55 117 275 0.425

a NBS*AIDS83[8].
b Compression ratio = “unique d-spacings/possible d-spacings” for a given symmetry.
c Cell 4 (Orthorhombic P): a = 5.0 Å, b = 6.123724 Å, c = 8.660254 Å, V = 265.17 Å3.
d Cell 5 (Hexagonal P): a = 10.0 Å, c = 6.123724 Å, V = 530.33 Å3.

Table 9. Conjunction of a Ternary (Lattices I, II, III) and a Binary (Lattices IV and V) Lattice Metric Singularity. The sets of calculated d-spacings
(Å) for the lattices in the ternary (I, II, III) and binary (IV, V) singularities are almost identical

Lattice I: Lattice II: Lattice III: Lattice IV: Lattice V:
Cubic Pa Tetragonal Pb Orthorhombic Cc Orthorhombic Pd Hexagonal Pe

No d-calc d-calc d-calc d-calc d-calc

1 8.6603 8.6603 8.6603 8.6603 8.6603
2 6.1237 6.1237 6.1237 6.1237 6.1237
3 5.0000 5.0000 5.0000 5.0000 5.0000
4 4.3301 4.3301 4.3301 4.3301 4.3301
5 3.8730 3.8730 3.8730 3.8730 3.8730
6 3.5355 3.5355 3.5355 3.5355 3.5355
7 3.2733 3.2733
8 3.0619 3.0619 3.0619 3.0619 3.0619
9 2.8868 2.8868 2.8868 2.8868 2.8868

10 2.7386 2.7386 2.7386
11 2.6112 2.6112 2.6112 2.6112 2.6112
12 2.5000 2.5000 2.5000 2.5000 2.5000
13 2.4019 2.4019 2.4019 2.4019 2.4019
14 2.3146 2.3146 2.3146 2.3146 2.3145
15 2.2361 2.2361
16 2.1651 2.1651 2.1651 2.1651 2.1651
17 2.1004 2.1004 2.1004 2.1004 2.1004
18 2.0412 2.0412 2.0412 2.0412 2.0412
19 1.9868 1.9868 1.9868 1.9868 1.9868
20 1.9365 1.9365 1.9365 1.9365 1.9365
21 1.8898 1.8898 1.8898 1.8898 1.8898
22 1.8464 1.8464 1.8464 1.8464 1.8464

a Cell 1 (Cubic P): a = 8.660254 Å, V = 649.52 Å3.
b Cell 2 (Tetragonal P): a = 6.123724 Å, c = 8.660254 Å, V = 324.76 Å3.
c Cell 3 (Orthorhombic C): a = 4.082483 Å, b = 12.247449 Å, c = 8.660254 Å, V = 433.01 Å3.
d Cell 4 (Orthorhombic P): a = 5.0 Å, b = 6.123724 Å, c = 8.660254 Å, V = 265.17 Å3.
e Cell 5 (Hexagonal P): a = 10.0 Å, c = 6.123724 Å, V = 530.33 Å3.



however, the situation is more complex as the quality of
the observed data is influenced by such factors as
experimental errors, accidental absences, and impuri-
ties. Consequently the indexing program may not yield
all the potential answers and it may not yield the
correct answer! This happened to us in the course of our
experimental work. In our case, we obtained only
the orthorhombic solution in the binary singularity
when, in fact, the crystal was later shown to be cubic
primitive. Other scenarios are equally possible. For
example, if one obtains only the primitive tetragonal or
C-centered orthorhombic cell of the ternary singularity,
then one would have a derivative subcell of the correct
lattice. Subsequent structure solving techniques may
then yield an incorrect solution using the derivative cell
as the basis cell.

How can errors in lattice determination be prevent-
ed? One key to prevention is to inspect the reduced
form. A warning flag is extra specialization in the
reduced form. As Table 2 and 6 show, the reduced 
forms for the lower symmetry indexing answers all
have more specialization than required for the given
reduced form type [7]. For example, in Table 2 the
symmetrical scalars of the reduced form (a·a b·b c·c)
for lattice II are in the ratio 1:1:2 (whereas the require-
ment is simply 1:1:1+x). Extra specialization of this
nature commonly indicates that something is unusual
such as an incorrect answer or a highly specialized
lattice. Another key to error prevention is to use other
methods along with powder indexing. For example, any
primitive cell determined via the precession method
would distinguish between the potential indexing solu-
tions. Likewise, optical techniques, such as polarization
microscopy, would be helpful in determining the
correct lattice symmetry. Finally, the crystallographic
databases should be routinely searched for the same
and related materials and to orient the crystal under
study with extant materials.

The above discussion has focused on the cubic
crystals characterized by a primitive lattice. However,
for cubic crystals, mathematical ambiguities in
indexing are not confined to crystals characterized
by a cubic primitive lattice. They also occur in the
centered cubic lattices. In the cubic F system, there
is a ternary lattice metric singularity and in the cubic I
system there is a quaternary lattice metric singularity
[9]. Table 10 presents the four lattices in the quaternary
LMS. Inspection of Table 10 reveals that the Lattices
II-IV are derivative sublattices of lattice I. The volume

volume ratios for the four reduced cells for lattices I-IV
are 1:1/2:1/3:1/4. As in the ternary LMS in the cubic P
system, the reduced forms for lattices I-IV have more
specialization than required for the given reduced form
type.

6. Conclusion

The above analysis shows that lattice metric singu-
larities are inherent in the cubic system. In the Cubic P,
I and F systems, we encounter a ternary (in conjunction
with a binary), a quaternary, and a ternary lattice metric
singularity, respectively. Singularities are a mathemati-
cal property of lattices which cannot be ignored.
Consequently, one cannot prove that a crystal is cubic
by indexing procedures alone.

Obviously, it is important to be aware of all members
of a singularity. Due to a variety of factors (i.e., quality
of data, accidental absences, quality of crystal, etc.),
indexing programs may miss some of the members of a
given singularity. In the above discussion, it was noted
that in experimental practice, it is possible to miss the
highest symmetry member of a singularity. 

When a singularity occurs, which member represents
the correct solution? Usually one would expect that
the indexing solution with the highest symmetry is the
correct solution. But is this a valid assumption? Have
certain crystals inadvertently and unknowingly been
assigned an erroneous higher crystal symmetry?
Alternatively, if a crystal is indexed on the basis of a
lower symmetry lattice, is this a valid assumption? The
following example illustrates an actual case.

6.1 Singularities in Experimental Practice—OsO2

Knowledge of singularities is important in experimen-
tal practice. Thus one should be aware when one is deal-
ing with a member of a singularity. For example, a case
of especial interest is OsO2 which has been reported [10-
13] to be a rutile type structure crystallizing in the tetrag-
onal system. An analysis of the reported cell dimensions
shows that this lattice is involved in the type of quater-
nary singularity shown above in Table 10. In fact, the
data reported in the Powder Diffraction File [12](PDF
no 43-1044) can be refined to yield a cubic I-centered
cell [a = 6.36553(2) Å] with an excellent figure of merit
[M(20) = 178, F(20) = 77)]. Likewise the other two
members of this quaternary singularity can also be
refined to yield a high figure of merit.
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In understanding the physical properties of this
material, the fact that OsO2 is reported as the tetragonal
member of a quaternary singularity has practical and
theoretical consequences. First, was an error made in
symmetry determination? Was it incorrect to assume
that this compound is tetragonal like all the other rutile-
related structures (see Table II of Rogers, et al. [11]?
Most likely an error was not made as Boman [13] has
carried out a “precision determination” of the tetrago-

nal crystal structure based on single crystal techniques.
Second, if the tetragonal cell and space group are
indeed correct, there are interesting implications. This
means that the lattice of this compound, in contrast to
all the other rutile type structures, is special as it is a
rutile structure involved in a singularity. The OsO2

crystal would have a superlattice of higher symmetry
and be characterized by a powder pattern with far fewer
unique d-spacings than related rutile-type materials.
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a (Å) 8.6603 6.1237 4.0825 3.0619
b(Å) 8.6603 6.1237 8.6603 4.3301
c(Å) 8.6603 4.3301 12.2475 6.1237
α (°) 90.0 90.0 90.0 90.0
β(°) 90.0 90.0 90.0 90.0
γ (°) 90.0 90.0 90.0 90.0
V(Å3) 649.52 162.38 433.01 81.19
a/c 1.0 √2

—
1/3 1/2

b/c 1.0 √2
—

√½
—

√½
—

Reduced Cells

Cell R1 R2a R3b R4c

a (Å) 7.5000 4.3301 4.0825 3.0619
b (Å) 7.5000 6.1237 4.7871 4.3301
c(Å) 7.5000 6.1237 6.4550 6.1237
α(°) 109.471 90.0 82.251 90.0
β(°) 109.471 90.0 71.565 90.0
γ (°) 109.471 90.0 64.761 90.0
V(Å3) 324.76 162.38 108.25 81.19

Normalized Reduced Forms

Form F1 F2 F3 F4

a·a 1 1 1 1
b·b 1 2 1.375 2
c·c 1 2 2.500 4
b·c –1/3 0 1/4 0
a·c –1/3 0 1/2 0
a·b –1/3 0 1/2 0
Form No. 5 21 26 32

Transformations
a R2 → R1 [ 1 –1 0 / –1 0 1 / –1 0 –1 ] ∆ = 2.
b R3 → R1 [ 1 1 0 / –2 1 0 / 0 –1 1 ] ∆ = 3.
c R4 → R1 [ 0 –1 –1 / 2 1 0 / 0 –1 1 ] ∆ = 4.

Lattice I: Lattice II: Lattice III: Lattice IV:
Cubic I Tetragonal P Orthorhombic F Orthorhombic P

Conventional Cells

Cell Cell 1 Cell 2 Cell 3 Cell 4

Table 10. Quaternary lattice metric singularity. The four lattices yield the same set of unique calculated d-spacings. For each lattice the table gives
the conventional cell along with the corresponding reduced cell and normalized reduced form



6.2 Singularities Offer Opportunities

Lattice metric singularities offer novel opportunities.
They provide a mechanism to evaluate powder index-
ing programs. If working properly, an indexing
program should obtain all members of a singularity.
From the database building perspective, they provide a
mathematical mechanism to evaluate certain types of
lattices which are defined by specialized reduced cells.
And from the synthetic perspective, their existence
makes it possible to prepare compounds with potential-
ly unusual physical properties.
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